110 research outputs found

    Congenital Nasal Pyriform Aperture Stenosis Repair: A Case Series and Discussion of Postoperative Care

    Get PDF
    Congenital nasal pyriform aperture stenosis (CNPAS) is a rare condition related to holoprosencephaly in which bony overgrowth of the medial nasal process of the maxilla narrows the pyriform aperture. CNPAS presents in neonates with signs of upper airway obstruction ranging from mild to severe respiratory distress and failure to thrive. Surgical intervention is indicated after failed conservative measures and generally includes temporary stent placement. We report a series of 3 cases of CNPAS treated surgically, examine postoperative care recommendations in the literature, and present a comprehensive postoperative care regimen with a novel method to maintain stent patency

    A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors

    Get PDF
    GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIbα. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspBBR), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspBBR structure revealed that it is comprised of three independently folded subdomains or modules: 1) an Ig-fold resembling a CnaA domain from prokaryotic pathogens; 2) a second Ig-fold resembling the binding region of mammalian Siglecs; 3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIbα. Further examination of purified GspBBR-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspBBR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues

    Comparing Glial Fibrillary Acidic Protein (GFAP) in Serum and Plasma Following Mild Traumatic Brain Injury in Older Adults

    Get PDF
    Objective:Identification and validation of blood-based biomarkers for the diagnosis and prognosis of mild traumatic brain injury (mTBI) is of critical importance. There have been calls for more research on mTBI in older adults. We compared blood-based protein marker glial fibrillary acidic protein (GFAP) concentrations in serum and in plasma within the same cohort of older adults and assessed their ability to discriminate between individuals based on intracranial abnormalities and functional outcome following mTBI. Methods:A sample of 121 older adults [>= 50 years old with head computed tomography (CT),n= 92] seeking medical care for a head injury [Glasgow Coma Scale scores of 14 (n= 6; 5.0%) or 15 (n= 115; 95.0%)] were enrolled from the emergency department (ED). The mean time between injury and blood sampling was 3.4 h (SD= 2.1; range = 0.5-11.7). Serum GFAP concentration was measured first using the Human Neurology 4-Plex Assay, while plasma GFAP concentration was later measured using the GFAP Discovery Kit, both on an HD-1 Single molecule array (Simoa) instrument. Glasgow Outcome Scale-Extended was assessed 1 week after injury. Results:Both serum and plasma GFAP levels were significantly higher in those with abnormal CT scans compared to those with normal head CT scans (plasma:U= 1,198,p< 0.001; serum:U= 1,253,p< 0.001). The ability to discriminate those with and without intracranial abnormalities was comparable between serum (AUC = 0.814) and plasma (AUC = 0.778). In the total sample, GFAP concentrations were considerably higher in plasma than in serum (Wilcoxon signed-rank testz= 0.42,p< 0.001,r= 0.42). Serum and plasma GFAP levels were highly correlated in the total sample and within all subgroups (Spearman'srhorange: 0.826-0.907). Both serum and plasma GFAP levels were significantly higher in those with poor compared to good functional outcome (serum:U= 1,625,p= 0.002; plasma:U= 1,539,p= 0.013). Neither plasma (AUC = 0.653) nor serum (AUC = 0.690) GFAP were adequate predictors of functional outcome 1 week after injury. Conclusions:Despite differences in concentration, serum and plasma GFAP levels were highly correlated and had similar discriminability between those with and without intracranial abnormalities on head CT following an mTBI. Neither serum nor plasma GFAP had adequate discriminability to identify patients who would have poor functional outcome

    A DNMT3B Alternatively Spliced Exon and Encoded Peptide Are Novel Biomarkers of Human Pluripotent Stem Cells

    Get PDF
    A major obstacle in human stem cell research is the limited number of reagents capable of distinguishing pluripotent stem cells from partially differentiated or incompletely reprogrammed derivatives. Although human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) express numerous alternatively spliced transcripts, little attention has been directed at developing splice variant-encoded protein isoforms as reagents for stem cell research. In this study, several genes encoding proteins involved in important signaling pathways were screened to detect alternatively spliced transcripts that exhibited differential expression in pluripotent stem cells (PSCs) relative to spontaneously differentiated cells (SDCs). Transcripts containing the alternatively spliced exon 10 of the de novo DNA methyltransferase gene, DNMT3B, were identified that are expressed in PSCs. To demonstrate the utility and superiority of splice variant specific reagents for stem cell research, a peptide encoded by DNMT3B exon 10 was used to generate an antibody, SG1. The SG1 antibody detects a single DNMT3B protein isoform that is expressed only in PSCs but not in SDCs. The SG1 antibody is also demonstrably superior to other antibodies at distinguishing PSCs from SDCs in mixed cultures containing both pluripotent stem cells and partially differentiated derivatives. The tightly controlled down regulation of DNMT3B exon 10 containing transcripts (and exon 10 encoded peptide) upon spontaneous differentiation of PSCs suggests that this DNMT3B splice isoform is characteristic of the pluripotent state. Alternatively spliced exons, and the proteins they encode, represent a vast untapped reservoir of novel biomarkers that can be used to develop superior reagents for stem cell research and to gain further insight into mechanisms controlling stem cell pluripotency

    Taxonomy based on science is necessary for global conservation

    Get PDF
    Peer reviewe

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)
    corecore